Application of guar gum in electrospun nanofibers as mebendazole drug release controller: a kinetic study and thermodynamics analysis
Authors
Abstract:
The current study aimed at in vitro investigating the kinetic study and thermodynamic analysis of mebendazole drug released from electrospun cellulose nanofiber in which guar gum is used as a release controller. The nanofibers were fabricated by electrospinning technique. The fibers were boosted by different controller guar gum 10 at 50, 250, and 500 ppm concentrations. The drug release was investigated on each fiber at 25 °C, 31 °C, 37 °C, and 43 °C for 72 h. The results showed that guar gum can be used as a drug controlling agent in nanofiber. The drug release becomes more difficult where the concentration of guar gum in the nanofiber is higher. Various models for kinetic modeling were investigated, among which the Sahlin-Peppas model fitted the experimental data efficiently. Kinetic studies have shown that both diffusion and swelling mechanisms contribute to the drug release process. This is due to the hydrophilic nature of guar gum. If the value of the controller is greater, the diffusion mechanism dominates the process. Thermodynamic analysis showed that drug release at all controlling concentrations is not spontaneous (ΔG>0) and is an endothermic process (ΔH>0), leading to increased disorder (ΔS<0). Activation energy increases with the increase in the amount of guar gum controller, which means that more energy is needed to release the drug.
similar resources
Kinetic and thermodynamics analysis: effect of eudragit polymer as drug release controller in electrospun nanofibers
The purpose of the present study was investigating kinetic and thermodynamic analysis using eudragit (EUD) polymer as controller to drug release mebendazole. nanofibers containing various proportions of EUD polymer, that were prepared with electrospinning technique. In this study, the amount of drug mebendazole release was investigated using nanofibers containing EUD at concentrations 50, 250,...
full textDrug release rate and kinetic investigation of composite polymeric nanofibers
Objective(s): In this work, electrospun nanofibers were explored as drug delivery vehicles using tetracycline as a model drug. Nanocomposite fibers including chitosan (CS)/poly (ethylene oxide) (PEO) and antibiotic were successfully prepared using electrospinning. CS blended with PEO considering a weight ratio of (90/10), and then, nanofibrous samples were successfully e...
full textApplication of Image Analysis in the Characterization of Electrospun Nanofibers
In this work, CoFe2O4 nanoparticles have been prepared by co-precipitation technique. The synthesized CoFe2O4 nanoparticles were applied in the preparation of CoFe2O4/Polyacrylonitrile fiber nanocomposites by the electrospinning process. The prepared nanoparticles and nanofibers were characterized using the Scanning Electron ...
full textIn-vitro study of Ketoprofen release from synthesized silica aerogels (as drug carriers) and evaluation of mathematical kinetic release models
Silica aerogels are porous and extremely lightweight nano-materials shows interesting properties. These materials, because of biocompatibility, non-harmful to the body and special physical characteristics such as large surface area and low density have great potential for use in a drug delivery system (DDS). The focus of this study is the evaluation of the effects of silica aerogels on improvin...
full textdrug release rate and kinetic investigation of composite polymeric nanofibers
objective(s): in this work, electrospun nanofibers were explored as drug delivery vehicles using tetracycline as a model drug. nanocomposite fibers including chitosan (cs)/poly (ethylene oxide) (peo) and antibiotic were successfully prepared using electrospinning. cs blended with peo considering a weight ratio of (90/10), and then, nanofibrous samples were successfully electrospun from their a...
full textIn-vitro study of Ketoprofen release from synthesized silica aerogels (as drug carriers) and evaluation of mathematical kinetic release models
Silica aerogels are porous and extremely lightweight nano-materials shows interesting properties. These materials, because of biocompatibility, non-harmful to the body and special physical characteristics such as large surface area and low density have great potential for use in a drug delivery system (DDS). The focus of this study is the evaluation of the effects of silica aerogels on improvin...
full textMy Resources
Journal title
volume 8 issue 1
pages 92- 101
publication date 2020-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023